首页 科技内容详情
Telegram好玩的bot(www.tel8.vip):自小与“电”结下不解之缘,他靠一张膜将改变燃料电池

Telegram好玩的bot(www.tel8.vip):自小与“电”结下不解之缘,他靠一张膜将改变燃料电池

分类:科技

网址:

SEO查询: 爱站网 站长工具

点击直达

皇冠平台出租www.hg108.vip)是皇冠(正网)接入菜宝钱包的TRC20-USDT支付系统,为皇冠代理提供专业的网上运营管理系统。系统实现注册、充值、提现、客服等全自动化功能。采用的USDT匿名支付、阅后即焚的IM客服系统,让皇冠代理的运营更轻松更安全。


文质彬彬、不爱言辞,典型的学者风,初识天津大学化工学院优秀青年教授张生,他给人这样的印象。


然而,当聊起他深耕了十几年的电化学研究,张生瞬间变了一个人,侃侃而谈。一直和各种电池打交道,并取得多项世界级研究成果。张生坦言:“利用电化学原理开发清洁能源技术是我的理想。”


张生在实验室


近日,张生与英国曼彻斯特大学诺贝尔物理学奖得主安德烈·海姆爵士等人合作,证实了石墨烯、氮化硼等二维材料具有质子传导性,并进一步发现,把自然界中广泛存在的云母用于燃料电池的高温质子交换膜,比目前商用膜性能更优、更节能环保。这两项研究成果分别发表在世界顶级学术期刊《自然·纳米》与《自然·通讯》上。


这种膜的发现之旅有着怎样的故事呢?


自小与“电”结下不解之缘


“我从本科到博士一直读的都是电化学专业,回想起来,我从小就对电特别好奇。”回忆起和电化学结缘,张生娓娓道来。中学时,张生最喜欢的化学实验就是拆开收音机用过的旧电池,把二氧化锰和锌做的电极插入碱性溶液中,就会产生电,让小灯泡亮起来。“现在想来,干电池就是最简单的电化学原理的应用,即将化学能转化为电能,专业术语叫作‘原电池’。”


2005年读研究生时,张生第一次接触到了燃料电池,自此一干就是十几年。“燃料电池是一种很棒的清洁能源技术,不受热力学循环限制,能量转换效率极高,而且燃料电池发电过程的产物只有水,没有碳排放,非常环保。”张生感慨地说,“但当时我国燃料电池研究才刚起步,研发出来的燃料电池成本高,很难实现商业化。”


张生读博士的时候,主要的研究方向就是降低燃料电池成本。他和所在的团队通过碳改性,增加廉价金属用量,达到了和用昂贵的铂金催化剂做电极一样的效果,电极成本极大降低。


在燃料电池中,质子传导性能对于燃料电池能量转化效率非常关键。“当时只有全氟磺酸膜,技术垄断价格高而且不耐高温。燃料电池需要的质子传导膜既要非常薄,还要像一张‘网’一样,孔洞大小只能让质子快速通过且能阻挡反应物氢气的渗透。但当时由于我的知识局限性,还不足以攻克这个难题。”张生解释道。


带着这个遗憾,张生去了美国进行博士后研究,主攻方向是温室二氧化碳的电化学转化利用。在国外学习工作期间,他接触到了更多的材料学、化学、物理等方面的知识,这些新知识拓展了他的视野,但寻找性能更优良的质子传导膜这个难题始终让他念念不忘。


质子交换膜的新突破


张生的执着让他的人生轨迹再次与燃料电池产生交集,优异的研究成果使张生获得欧盟杰出人才计划资助,到英国曼彻斯特大学工作,专心进行质子交换膜的难题研究。


2019年11月15日报道,天津大学化工学院张生教授与英国曼彻斯特大学诺贝尔物理奖得主安德烈·海姆教授等人合作,在世界顶级刊物《自然通讯》与《自然纳米》连续发表两篇研究论文《二维材料的绝佳质子选择性》和《云母薄片的高温质子传导性》,证实了石墨烯、氮化硼等二维材料中质子传输的选择性为100%(质子即氢离子)并发现云母可以用作燃料电池的高温质子交换膜。两项研究成果有望推进氢燃料电池汽车的商业化发展。


燃料电池是直接把燃料的化学能转换为电能的装置。它是一种很有发展前途的洁净和高效的发电方式,被称为21世纪的分布式电源。

,

新2最新网址www.hg108.vip)实时更新发布最新最快最有效的新2网址和新2最新网址,包括新2手机网址,新2备用网址,皇冠最新网址,新2足球网址,新2网址大全。

,



燃料电池汽车是一种新能源电动汽车,与目前常见的家用锂离子电池电动汽车相比,省去了漫长的充电时间,只需要一两分钟即可加满燃料。同时燃料电池汽车不经历热机过程,不受热力循环限制,能量转换效率极高,续航更长,因此燃料电池汽车成为了未来汽车的主要发展方向之一。燃料电池汽车的核心组件就是燃料电池,其工作原理是氢气失去电子成为质子,而后穿过质子交换膜在电池内部传输形成完整的电流回路。因此,质子传导膜的质子传导性能在很大程度上影响着燃料电池的能量转化效率。目前商业化质子传导膜厚度至少在5微米以上,若能开发更薄的膜材料,将有助于质子传导性的提高,对燃料电池汽车具有重要的推动意义。


张生与合作者制备了微米级的单层氮化硼薄膜,将该薄膜两侧分别放置不同浓度的盐酸(即HCl)溶液,由于不同浓度导致的浓差梯度,使浓度高的一侧的离子向浓度低的一侧扩散,离子的运动形成了电流。他们根据理论计算出具有六边网格结构的石墨烯和氮化硼等二维材料由于其特殊的物理尺寸效应,只允许直径小于10皮米的粒子通过。盐酸由氢离子和氯离子,氢离子大小约为0.001皮米,氯离子大小约为181皮米,所以只有较小的氢离子才能通过该薄膜。因此,该实验中通过氮化硼薄膜的电流全部是由氢离子传导产生的,而体积稍大的氯离子则完全没有贡献。“这不仅是我们理解质子和原子薄膜相互作用的一个重要进展,同时也对石墨烯等二维材料在高效膜分离领域的基础研究与应用开发具有重要意义”。


虽然由于自身特殊的结构属性,石墨烯、氮化硼等虽具有只允许氢离子通过的性能,但其传输阻力较高,氢离子的传导速度较慢,不适宜做商业化推广。为此,张生教授等人进一步开发了具有高质子传导率的新型质子传导膜材料—云母膜。


云母是一种储量丰富且价格低廉的矿物,其主体由像海绵一样的铝硅酸盐层组成,钾离子则像水一样在其中的孔隙中大量存在。由于离子交换反应,钾离子可以很容易地与氢离子进行交换。因为钾离子大小约为100皮米,而氢离子大小约为0.001皮米,相对于原本钾离子所在的孔隙大小,氢离子的体积要小得多,因此氢离子可以很好地在这些孔隙中进行传输。


研究发现,处理后的云母薄膜,质子传导率得到极大提高,且使用温度从100℃延伸到了500℃,极具应用前景。张生教授说:“我们发现离子交换反应后的云母薄膜质子传导率提高了100倍,这是令人鼓舞的。目前石墨烯被认为是一种有前景的质子传导材料,我们的研究则发现云母可能比石墨烯更有前景,因为它质子传导性更好、热稳定性更高,且储量丰富价格低廉。”研究还发现在150℃的温度下,云母膜质子传导率超过了目前商业化工业化要求的两倍,也就是说用于燃料电池后,汽车的行驶里程也将极大提高。


目前张生等研究人员正在制备大尺度云母膜,利用其高效的质子传导性和优良的耐热性,用于改进现有燃料电池技术,推动燃料电池汽车的发展和完善。此外,除了燃料电池汽车外,该膜材料还可用于液流电池、太阳能光解水、海洋蓝色能源提取,以及二氧化碳电化学转化成甲酸、乙醇、乙烯等化工原料的众多清洁能源技术。


破解提升燃料电池性能难题


“寻找能够做‘网’的二维材料这件事,说起来容易,但研究过程也是一波三折。”张生说,根据各种文献和之前的研究,他们找到了石墨烯这种二维材料,本以为找到了一张合适的“网”,但事实证明,这条路才刚刚开始。石墨烯材料是由碳的六元环结构组成的,十分不稳定,需要以铜片为基底才能稳定成石墨烯膜。但是铜不能让质子通过,因此还需要把稳定的石墨烯从铜片上转移下来。


“整整半年时间,我们实验了热压、冷压等二十多种方法,但由于界面作用没那么强,转移过程中石墨烯膜都破损严重。”回忆起当时的情形,张生至今难忘,“我当时的心情,和曼彻斯特的冬天一样,见不到阳光。”通过总结失败的方案,张生调整思路,最终找到一种胶增加了界面强度,实现了石墨烯膜的完美转移。


然而石墨烯膜并没有解决耐高温的问题,回国后,张生又找到和石墨烯结构相近一些材料,但都存在各种问题。直到云母材料的出现,让张生如获至宝。“云母在地壳中储量极其丰富且价格低廉,使用云母制备的云母质子膜可以满足各种条件,而且使用温度可以从100℃延伸到500℃。”张生介绍说,云母膜质子传导率超过了目前商业化要求的两倍,应用于燃料电池后,未来电动汽车的行驶里程将会有很大提高。


“我们发展燃料电池这一清洁能源技术的初衷之一是减少碳排放,而更好地减少碳排放的办法是把二氧化碳变废为宝。”依托天津大学化学学院绿色合成与转化教育部重点实验室,张生通过反向利用燃料电池的能量转化原理,通过电能打开二氧化碳的碳氧分子键,加入氢将二氧化碳有选择性地转化为甲酸、乙烯和乙醇等有用的物质。


“虽然这项研究难度很大,但是做科研需要迎难而上的精神,我相信通过努力,我们的团队一定能开发出通过电化学途径转化二氧化碳这样一种清洁能源技术。”面对未来,张生充满信心。




来源:科技日报,中国发展网,百科天地

注:文章内的所有配图皆为网络转载图片,侵权即删!

,

Telegram好玩的botwww.tel8.vip)是一个Telegram群组分享平台。Telegram好玩的bot包括Telegram群成员导出、telegram群组索引、Telegram群组导航、新加坡telegram群组、telegram中文群组、telegram群组(其他)、Telegram 美国 群组、telegram群组爬虫、电报群 科学上网、小飞机 怎么 加 群、tg群等内容。Telegram好玩的bot为广大电报用户提供各种电报群组/电报频道/电报机器人导航服务。

发布评论